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Lyapunov spectrum and synchronization of piecewise linear map lattices with power-law coupling
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We study the synchronization properties of a lattice of chaotic piecewise linear maps. The coupling strength
decreases with the lattice distance in a power-law fashion. We obtain the Lyapunov spectrum of the coupled
map lattice and investigate the relation between spatiotemporal chaos and synchronization of amplitudes and
phases, using suitable numerical diagnostics.
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I. INTRODUCTION

Coupled map lattices are spatially extended dynam
systems suitable to illustrate the interplay of spatial and te
poral degrees of freedom and the phenomena resulting f
this synergy as domain formation, traveling waves, s
tiotemporal intermittency, defect propagation, and fully d
veloped turbulence@1,2#. One of the most intensively studie
collective phenomena in spatially extended system is s
chronization@3#. While synchronization of periodic system
a well-known subject with a venerable history, for chao
systems this investigation is relatively new@4#.

The diversity of dynamical phenomena exhibited by l
tices of coupled chaotic maps can be revealed by descri
the various types of synchronized regimes they display.
question of how synchronization and chaos are related
coupled map lattices and oscillator chains has receive
great deal of attention in recent years@5#. In this paper, we
focus on the influence of the coupling between maps on
amplitude and phase-synchronization properties, as we
on the corresponding Lyapunov spectrum.

The effective coupling range is a key factor to determ
whether or not the maps mutually synchronize. Short ra
~nearest-neighbor or diffusive! couplings do not favor syn
chronization, since the coupling effect is typically too we
to overcome the disorder caused by the map dynamics@6,7#.
On the other hand, nonlocal couplings tend to facilitate s
chronization, since the coupling effect extends through
the lattice, as in globally coupled map lattices, where e
site interacts with the mean field produced by all the ot
ones@8,9#. Nonlocal couplings appear in neural network a
chitectures with local production of information@10#, and
also result from discretization of some partial integr
differential equations modeling physico-chemical reactio
@11#. Further applications of nonlocal couplings are in asse
blies of biological cells with oscillatory activity, whose inte
action is mediated by some rapidly diffusing chemical su
stance @12#, and in systems of diffusion coupling i
nucleation kinetics, with elimination of the rapidly diffusin
components@13#.

We consider a form of coupling whose intensity deca
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with the distance along the lattice in a power-law fashio
Such power-law coupling have been used in models of so
biological neural networks@14#. Other nonlocal couplings o
interest are intermediate range couplings, that consider
nite number of non-nearest neighbors@15#; and small-world
networks, which have regular couplings with nearest a
non-nearest neighbors as well as a small number of rando
chosen nonlocal interactions@16#. The power-law coupling
to be considered in this paper presents an effective ra
parameter, in such a way that we are able to pass cont
ously from a local to a global coupling scheme. It was us
for studies of an extended Kuramoto model@17#, chains of
coupled kicked limit-cycle oscillators@18#, coupled sine-
circle map lattices@19#, and coupled van der Pol oscillator
@20#. The synchronization properties of these systems w
found to be strongly dependent on the effective range,
there occurs a nonequilibrium phase transition@21# between
a synchronized and a nonsynchronized state as we go fro
global to a local coupling form@19,20#.

In this paper, we analyze a lattice of chaotic piecew
linear maps, so as to investigate the effects of a vary
coupling range on the number of positive Lyapunov exp
nents of the system. The Lyapunov spectrum in the lo
coupling case has been studied by Kaneko@7#, and by Isola
et al. @22#, who stressed its connection with the spectrum
the discrete Schro¨dinger operator in quantum mechani
@23#. The corresponding spectrum for globally coupled l
tices was also considered by Kaneko@8#. We study the
Lyapunov spectrum by means of the correspond
Kolmogorov-Sinai~KS! entropy@24# and Lyapunov dimen-
sion @25#. The former may be used to build a thermodynam
cal formalism for coupled map lattices@26#. We have previ-
ously investigated the effect of a variable effective range
a lattice of coupled logistic maps at a crisis@27#.

Another issue to be addressed in this paper is the sync
nization properties of the coupled map lattice and their re
tions with its Lyapunov spectrum. For describing amplitu
~or complete! synchronization we have used as numeri
diagnostics the space-averaged amplitude and its disper
and a complex-valued order parameter@28#. According to the
phase definition of Hu and Liu@29#, we also characterized
phase-synchronized states.

This paper is organized as follows: in Sec. II we study t
Lyapunov spectrum, and Sec. III is devoted to an investi
tion of the amplitude synchronization. Phase synchroniza
sa,
©2002 The American Physical Society09-1
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is considered in Sec. IV, and the Sec. V contains our con
sions.

II. LYAPUNOV SPECTRUM

We examine a lattice ofN coupled piecewise linear map
x° f (x)5bx (mod 1), wherexn

( i )P@0,1) represents the
state variable for the sitei ( i 51,2, . . . ,N) at timen, andb
.1. A power-law coupling is given by@19#

xn11
( i ) 5~12e! f ~xn

( i )!1
e

h~a! (
j 51

N8 1

j a
@ f ~xn

( i 1 j )!1 f ~xn
( i 2 j )!#,

~1!

wheree.0 anda.0 are the coupling strength and rang
respectively, and

h~a!52(
j 51

N8 1

j a
~2!

is a normalization factor, withN85(N21)/2 for N odd.
The coupling term in Eq.~1! is a weighted average o

discretized second spatial derivatives, the normalization
tor being the sum of the corresponding weights. Ifa→`,
only those terms withj 51 will contribute to the summation
present in the coupling term, which results inh→2, so that
we obtain the usual future Laplacian coupling

xn11
( i ) 5~12e! f ~xn

( i )!1
e

2
@ f ~xn

( i 11)!1 f ~xn
( i 21)!#, ~3!

which connects nearest neighbors only@1,6#. In the case
where a50, we have thath5N21 and the coupling be
comes of a global type

xn11
( i ) 5~12e! f ~xn

( i )!1
e

N21 (
j 51,j Þ i

N

f ~xn
( j )!, ~4!

where each site interacts with the mean value of all lat
sites, irrespective of their relative positions~‘‘mean-field’’
model! @8#. The power-law coupling in Eq.~1! may be re-
garded as a kind of interpolating form between these limit
cases. Further properties of the coupling term for arbitrara
may be found in Ref.@18#.

The ~uncoupled! piecewise linear mapf (x)5bx ~mod 1)
has Lyapunov exponentlU5 ln b for almost all initial con-
ditions x0 ~except a Lebesgue measure zero set of po
where the map is discontinuous!, such that forb.1 we have
a strongly chaotic dynamics. On the other hand, the coup
map lattice~1! exhibits a Lyapunov spectrum consisting ofN
ordered exponentsl15lmax.l2.•••.lN . For the two
limiting cases of the coupling prescription~1! this spectrum
is analytically known thanks to the constant slope off (x).
For a→` we have the local or diffusive coupling~3!. Using
periodic boundary conditions,xn

(0)5xn
(N) , the Jacobian ma

trices are symmetric and circulant, and the correspond
Lyapunov spectrum is@7,22,30#
05620
u-

,

c-

e

g

ts

d

g

l j~b,e!5 ln b1 lnU12eF12cosS 2p j

N D GU
~ j 51,2, . . . ,N!. ~5!

Likewise, fora50 the globalmean-fieldcoupling in Eq.~4!
leads to the following (N21)-fold degenerate Lyapuno
spectrum@8#

l1~b!5 ln b, ~6!

l j~b,e!5 lnUbF12eS 11
1

N21D GU ~ j 52,3, . . . ,N!,

providede,(N21)/N.
In a coupled map lattice it may well happen that ma

exponents are positive, hence a quantity of interest is
density of KS entropy@31,32#

h5^l j& j ,l j .05
1

N (
j 51

l j .0

l j . ~7!

It must be stressed that the equality betweenh and the den-
sity of KS entropy holds rigorously for systems having
Sinai-Ruelle-Bowen~SRB! measure@23#. SRB measures
were constructed for certain coupled map lattices@33#.

We analyze the dependence of the KS-entropy den
with the power-law coupling strengthe and effective range
a. Figure 1 shows a plot ofh versusa ande for a lattice of
piecewise linear maps withb53. For a global coupling (a
50) the mean value of the KS-entropy density is close
zero for strong coupling~large e) and at a given critical
valuee* '0.6 it grows monotonically to a maximum value
achieved for vanishing coupling, and turns to be just
Lyapunov exponent for uncoupled mapslU5 ln 3'1.098.

It is possible to understand this transition based on
Lyapunov spectrum for the global coupling case given
Eq. ~6!. Except forl15 ln b, which is always positive for
b.1, the otherN21 exponents are positive providede

FIG. 1. KS- entropy density in terms of the coupling range a
strength, for a lattice ofN5501 piecewise linear maps withb
53.0, periodic boundary conditions and random initial condition
9-2
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,ec512(1/b). Hence, fore>ec the KS-entropy density is
typically very small and actually vanishes forN→`. For 0
,e,ec all the exponents are positive, and the KS-entro
density depends one as

h~b,e;a50!5
1

N H ln b1~N21!lnFbS 12e2
e

N21D G J .

~8!

For b53 and largeN, h goes to zero fore>ec52/3, in
agreement with the result depicted in Fig. 1.

As the effective range increases, we still have such a t
sition for some critical coupling strengthe* (a), after which
the KS-entropy density builds up and achieves its maxim
value lU when the maps are uncoupled. For stronger c
pling ~highere) the KS-entropy density has a positive val
that increases witha. Whena is large the coupling betwee
maps becomes effectively noticeable with nearest neighb
and even a strong coupling is not able to change the cha
dynamics of the orbits for each map, although the numbe
positive Lyapunov exponents diminishes as the coup
strength grows.

We can use the analytical result for the Lyapunov sp
trum of the local case~5! to explain this result. The maxi
mum and minimum Lyapunov exponents arelU and
lmin(e)[lN/2(e)5 ln@b(122e)#, respectively. Ife, ẽc5@1
2(1/b)#/2, we havelmin.0 and all exponents are positive
giving a quite large KS-entropy density. On the other ha
even for e>ẽc (51/3 for b53) there are still typically
many positive exponents, what ensures the positivenes
the KS-entropy density, that nonetheless decreasese
grows. For some particular values ofe it is even possible to
derive analytical expressions forh(e), whena goes to infin-
ity @30#.

Another quantity of interest is the Lyapunov dimensionD.
Let p be the largest integer for which( j 51

p l j>0. ThenD is
defined by one of the following relations@25#:

D55
0 if there is no suchp,

p1
1

ulp11u (
j 51

p

l j if p,N,

N if p5N.

~9!

In Figure 2, we depict the Lyapunov dimension of a lattice
N piecewise linear maps withb53 versusthe coupling pa-
rametersa and e. Weakly coupled maps, regardless of t
range, have a maximum value for the Lyapunov dimensi
Dmax5N. It decreases sharply for a coupling strength grea
than e'0.6 to values near zero~for small a) or somewhat
higher~for largea). The properties of the Lyapunov dimen
sion are quite similar to the KS-entropy density. The d
crease of Lyapunov dimension for intermediate coupl
strength, in the local case, was observed for coupled log
map lattices@34#. The very small values ofD shown in Fig.
2 for a global and strong coupling suggest the existence
low-dimensional attractor, which we will relate to a synchr
nized regime. On the other hand, large dimension values
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us a clue of the complexity of the attractor structure in t
N-dimensional state space of the coupled map lattice.

III. AMPLITUDE SYNCHRONIZATION

Let us now turn our attention to amplitude synchroniz
clusters of maps~or completely synchronized maps! for
which the amplitudesxn

( i ) are equal. For globally coupled
logistic lattices these states were considered by Kaneko@8#,
who classified and coded the possible attractor types acc
ing to the properties exhibited by these clusters. A cluster
which all sites share a common amplitude has been calle
coherent attractor. We will consider situations for which
clusters of different sizes typically coexist with disorder
lattice sites.

For a lattice of coupled maps we use as a synchroniza
diagnostic the dispersion of the map amplitudes with resp
to their space averagêx&n5(1/N)( j 51

N xn
( j ) at a given time

n,

~dx!n5F 1

N21 (
j 51

N

~xn
( j )2^x&n!2G1/2

. ~10!

The time evolution of the average amplitude is shown in F
3 for a globally coupled lattice ofN maps withb53, after a
large number of transients have decayed. Thea50 case was
taken as an example, but the gross features are the s
regardless of the value adopted for the effective range
rameter. For uncoupled maps@Fig. 3~a!# the average ampli-
tude fluctuates around 1/2, which is the expected result f
uniform invariant distribution in the interval@0,1) displayed
by the strongly chaotic piecewise linear maps@35#.

Let P(xn
( i )) be a probability distribution, so tha

P(xn
( i ))dxn

( i ) gives the probability of a map iterate to fall int
an interval of widthdxn

( i ) , at timen. Since the distribution of
iterates is uniform,P(xn

( i ))51 for all xnP@0,1), and we have
the average^x( i )&5*0

1dxn
( i )xn

( i )P(xn
( i ))51/2. For coupled

maps we cannot guarantee ergodicitya priori for the entire
lattice, but if a sufficiently large number of maps remai

FIG. 2. Lyapunov dimension in terms of the coupling range a
strength, for a lattice ofN5501 piecewise linear maps withb
53.0, periodic boundary conditions and random initial condition
9-3
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chaotic ~or, equivalently, ifh is large enough! the average
amplitude is expected to be not far from 1/2@see Fig. 3~b!#,
with fluctuations whose amplitudes increase with the c
pling strength@Fig. 3~c!#.

In Fig. 4 we show the amplitude dispersion for the sa
parameters as in the previous figures. For uncoupled m
@Fig. 4~a!# this quantity is approximately constant at 0.2
which is expected from a uniform distribution of iterat
since in this case (dx)n5@*0

1dxn
( i )P(xn

( i ))(xn
( i )2^x( i )&)2#1/2

51/A12. For nonzero coupling the maps pass from a n
synchronized, due to the oscillatory behavior of the disp
sion @Fig. 4~b!#, to a completely synchronized state@Fig.
4~c!#, characterized by no dispersion at all with respect to
corresponding space average. The fact that the aver
themselves are oscillating chaotically@Fig. 3~c!# suggests
that the chaotic maps are completely synchronized in am
tude: xn

(1)5xn
(2)5•••5xn

(N)[xn , thus defining a one-
dimensional synchronization manifoldM embedded in the
N-dimensional state space@4#. If the Lyapunov exponent re
lated to the direction defined byM is positive~negative!, the
completely synchronized state is chaotic~periodic!. There
are alsoN21 mutually orthogonal directions transversal
M.

A completely synchronized state is actually a possible
lution for a lattice with power-law coupling. This result fo

FIG. 3. Time series of the average map amplitudes fora50.0
and~a! e50.00; ~b! e50.60; ~c! e50.67. Other parameters are th
same as in the previous figures.

FIG. 4. Time series of the amplitude dispersion fora50.0 and
~a! e50.00; ~b! e50.60; ~c! e50.67.
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lows directly from substituting the common amplitude of t
sites,xn , into Eq. ~1!, which gives

xn115~12e! f ~xn!1
e

h~a! (
j 51

N8 2 f ~xn!

j a
5 f ~xn!,

which reflects a symmetry inherent to a large class of c
pling forms@36#, and implies that the synchronization man
fold M is invariant under the application of the mapf (x).
An initial condition for the lattice,x0

( i ) , that belongs toM
will generate subsequent spatiotemporal patternsxn

( i ) that re-
main in M for all timesn.

However, the fact that a completely synchronized state
possible does not necessarily imply that it will be actua
observed. IfM is transversally unstable such a complete
synchronized state will not be achieved by typical spatiote
poral patterns. A necessary, albeit not sufficient, condition
existence of a completely synchronized state is that all
(N21) Lyapunov exponents corresponding to the directio
transversal toM be negative. If the synchronized state
chaotic the KS-entropy density goes to zero with an incre
ing lattice size.

These arguments are supported by another numerica
agnostic of amplitude synchronization: the complex ord
parameter introduced by Kuramoto@28#, and here adapted
for coupled map lattices as@19#

zn5Rn exp~2p iwn![
1

N (
j 51

N

exp~2p ixn
( j )!, ~11!

whereRn andwn are the amplitude and angle, respective
of a centroid phase vector for a one-dimensional lattice w
periodic boundary conditions. Figure 5 shows the time e
lution of the order parameter magnitude for the same par
eters as in the previous figures.

For uncoupled maps, we expect a pattern in which the
amplitudesxn

( j ) are so spatially uncorrelated that they may
considered essentially as random variables. In this case

order parameterzn5^e2p ixn
( j )

& j nearly vanishes for all times
This is indeed observed for the uncoupled case depicte
Fig. 5~a!, in which the order parameter magnitude exhib
small oscillations about a value close to zero. In a comple

FIG. 5. Time series of the order parameter magnitude fora
50.0 and~a! e50.00; ~b! e50.60; ~c! e50.67.
9-4
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LYAPUNOV SPECTRUM AND SYNCHRONIZATION OF . . . PHYSICAL REVIEW E 65 056209
synchronized state, like that depicted in Fig. 5~c!, the order
parameter magnitude rapidly grows to unity, indicating t
coherent superposition of the phase vectors for all sites w
the same~chaotic! amplitudes at each time. The synchron
zation transient in the case of Fig. 5~c! is very short, but may
also have an arbitrarily long duration, as illustrated by F
5~b!. There is a transition to an amplitude-synchronized s
as the coupling range varies from global to local, such
those previously found in chains of discrete and continuo
time oscillators@18–20#, and even in kinetic Ising model
with a power-law form of interaction between spins@37#.

The amplitude-synchronized state may present interm
tent bursts of nonsynchronized behavior when the effec
range parameter assumes moderately large values, wher
above-mentioned phase transition occurs. This intermitte
is revealed, in a time series of the amplitude dispersion,
sequence of the laminar phases with different durations
terrupted by bursts. We can understand the existence of
bursting by considering the invariant manifoldM corre-
sponding to a completely synchronized state. Suppose
simplicity that there is only one direction transversal toM,
and thatlT is the Lyapunov exponent related to this dire
tion, for initial conditions belonging toM, and such that if
lT,0 the synchronized state is transversally stable. In
case of more than one transversal direction one should
the master stability function technique developed by Pec
and Carroll@38# in order to verify the stability ofM.

It is useful to consider also the finite-time transver
Lyapunov exponentlT(n), which is obtained by taking a
short time interval of lengthn. The Lyapunov exponentlT is
the infinite-time limit oflT(n) and it is independent of the
initial condition, contrary tolT(n) that typically depends on
it @35#. The finite-time exponents typically have a statistic
distribution whose mean islT , and with fluctuations tha
may have positive as well negative values. LetlT be slightly
higher than zero, hence if an initial conditionx0

( i ) for the
lattice starts near but off the synchronization manifoldM, it
will initially wander nearbyM resulting in the laminar in-
tervals, but the pattern eventually moves far away fromM
@39#. However, because of the fluctuations inherent to
finite-time transversal exponents there are intervals for wh
lT(n),0 and the lattice pattern approachesM, forming the
intermittent bursts before returning to a new laminar sta
This effect has been studied in the context of the so-ca
on-off intermittency@40,41#. For more than one transvers
direction this mechanism still applies@5#.

The average duration of these synchronization lami
phases was found to obey a power-law dependence with
difference between the range parameter and a critical v
ac'0.486 875, in the form̂t&5K̃(a2ac)

g, where the ex-
ponent was found to beg50.202 47 ~Fig. 6!. When a
→ac

1 the average laminar duration goes to infinity and ev
tually results in a steady synchronized state fora<ac . We
remark that this critical value ofa for a steady synchroniza
ted state is close to the value after which the KS entro
begins to increase, whene51 @see Fig. 1#. This corroborates
the already mentioned fact that for a completely synch
nized state the KS-entropy density either vanishes or is
tremely small (;1/N) @42#.
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The results of Fig. 5 suggest that it is useful to consid
the mean value of the space-averaged order parameter
nitude

^R̄&5 lim
n→`

1

nN (
j 51

N

(
m50

n

Rm
( j ) , ~12!

and Fig. 7 shows its dependence with the coupling strenge
and rangea. Considering first the ‘‘mean-field’’ case (a
50) for weak coupling the mean order parameter is v
small, indicating absence of synchronization, a situation t
changes with increasinge to a completely synchronized
state. For nearest-neighbor coupling, however, the mean
der parameter remains small for all the considered value

FIG. 6. Average duration of synchronization laminar interva
for e51.0 as a function ofa2ac for ac50.486 875. Five initial
conditions were used for computing the average. The solid line
power-law fit.

FIG. 7. Mean value of the space-averaged order parameter m
nitude in terms of the coupling range and strength, for a lattice
N5501 piecewise linear maps withb53.0.
9-5
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BATISTA, De S. PINTO, VIANA, AND LOPES PHYSICAL REVIEW E65 056209
e, indicating that a locally coupled lattice does not exhi
amplitude synchronization at all, irrespective of how strone
is @11#. For intermediate effective range we do not find
simple interpolation between these two limiting cases, si
for moderately strong coupling there is a bump of high
values of ^R̄&, what implies the existence of a number
coexisting amplitude synchronization clusters. Howev
even this bump is smoothed out asa increases.

IV. PHASE SYNCHRONIZATION

There are many situations of physical interest in wh
two or more continuous-time oscillators may have differe
amplitudes, even in a chaotic regime, but with aphase co-
herence. The oscillator phase can be defined in various w
for continuous-time systems, the simplest one being a g
metrical phase for a bounded attractor@43,44#. For coupled
map lattices, an operational definition of phase-synchroni
states has been proposed by Hu and Liu@29#, as those state
showing local maxima or minima for their amplitudes at t
same time. The direction phase is provided by the direc
of two sequential iterations of the coupled maps@45#. A
quantitative definition of phase for a given lattice sitexn

( j ) at
a timen is thus

Pn
( j )5H 1 if xn

( j )/xn21
( j ) .1,

0 otherwise
~13!

in such a way that a phase-synchronized cluster is a reu
of adjacent sites with the same value ofPn

( j ) .
Figure 8~a! shows the overlap of amplitude-site profile

for a hundred successive times and after a large numbe
transients have decayed, for a lattice of strongly coup
maps withb53.0, in the intermediate range situation. Sin
the KS-entropy density for this lattice ish'2.231023, it is
expected that many of these maps are behaving chaotic
In order to allow for a better visualization of the loc
maxima and minima, in Fig. 8~b! we depict only three se
quential profiles, where the arrows show the phase di
tions. On the basis of the previous definition we can say
at timesn52972 and 2973 all sites in Fig. 8 are phase s
chronized, whereas atn52974 this occurs just for a fractio
of them.

Let us denote by N n
(0)5( j 51

N (Pn
( j )50) and N n

(1)

5( j 51
N (Pn

( j )51) the number of lattice sites at a given tim
with phases equal to 0 and 1, respectively. We defin
phase-synchronized ratiorn as @45#

rn[
1

N
max~N n

(0) ,N n
(1)! ~14!

in such a way that, if the phases of all lattice sites flip ra
domly between 0 and 1, its ratio would approach a cons
value, whereas ifr51 all lattice sites are in phase. Th
minimum value for this ratio isr51/2, a situation in which
half of the sites have a zero phase.

As the lattice pattern evolves with time, this ratio varies
an intermittent fashion, as illustrated by Fig. 9, where
parameters are the same as in the previous figure. The p
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synchronization ratio has laminar phases at 1.0 with irregu
bursts, some of them approaching the lower bound ar
51/2, indicating an intermittent behavior very similar to th
described in the preceding section for amplitude synchro

FIG. 8. Overlap of~a! 100, and~b! three space-amplitude plots
after 2900 transients, for a lattice ofN5501 maps witha50.49,
ande51.0. The arrows in~b! indicate the phase direction.

FIG. 9. Time series of the phase-synchronization ratio forN
5501, a50.49, ande51.0.
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zation. The average duration of the laminar intervals sca
with the range parameter in a power-law fashion, just l
that depicted in Fig. 6 and with the same exponent, show
that both share the same mechanism for bursting.

The number of phase-synchronization laminar interv
also depends on the interval lengths according to ano
power-law distribution~cf. Fig. 10! Q(t)5kt2s, with a
slope fits'1.43. We remark thats is close to the slope 3/2
theoretically predicted for the distribution of laminar inte
vals characteristic of on-off intermittency@40#. Hence we
have numerical evidence that the phase- and amplitu
synchronization intermittency is actually a manifestation
on-off intermittency, in which the invariant manifold of in
terest is the synchronization manifoldM. We have also
found thats does not depend in a significant way on t
coupling strengthe, as illustrated by Fig. 11~a!, wherea was
kept constant ande was varied between 0.965 and 0.98
Outside this range the regime where phase synchronizatio
interrupted by bursts no longer exists. Similarly, for const
e the power-law exponents also does not change appreci
bly with the range parametera, as can be seen in Fig. 11~b!,
in which the horizontal axis represents the differencea
2ac for ac50.486 875~see also Fig. 6!.

There is also a transition between phase-synchronized
nonsynchronized states, which can be evidenced by ana
ing the dependence on the coupling parameters of the m
ratio of phase-synchronized statesr̄(e,a)5 limn→`(1/
n)(m50

n rm , as depicted by Fig. 12 which is very similar
Fig. 7, where the mean order parameter was plotted aga
the same variables. The shapes of both diagrams are
cally the same for small and large effective ranges, even w
the bump characteristic of moderate coupling. This me
that, at least for the parameter ranges considered in
work, amplitude synchronization implies phase synchroni
tion.

V. CONCLUSIONS

Spatiotemporal chaos and synchronization are collec
phenomena typically displayed by coupled map lattices. T

FIG. 10. Number of phase-synchronization laminar interv
versus laminar lengths forN5501, a50.49, ande51.0. There
were considered 42 000 iterations and 2000 transients were
carded. The solid line is a power-law fit.
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FIG. 11. Exponent of the power-law distribution of phas
synchronization laminar regionsversus: ~a! e, for a50.47; ~b! a
2ac , with e51.0, andac50.486 875.

FIG. 12. Mean value of the phase-synchronization ratio in ter
of the coupling range and strength forN5501 andb53.0.

s

is-
9-7



inc
ha
is

on
to

t
o

th

th
th
c
o
o
p
p
,

el
p
d
e

th
ng
o

on
w
re
y

ces
ap
an
only

er
ery
de

ys-
his
ted
re
ive
ni-
nd
sal

rst
ug-
or

in
tice,
t to

ort
q,

BATISTA, De S. PINTO, VIANA, AND LOPES PHYSICAL REVIEW E65 056209
relation between them, however, is a complex issue s
there are many forms of synchronization of periodic and c
otic dynamics. We have chosen to study lattices of piecew
linear maps because they exhibit, when uncoupled, str
chaos with a uniform invariant distribution. In addition
this fact, piecewise linear maps have constant slope and
Lyapunov spectrum may be studied in detail. Quantities
interest in this study are the KS-entropy density and
Lyapunov dimension.

The coupling properties play a fundamental role on
lattice dynamics. We have used a coupling prescription
makes possible to pass continuously from a global to a lo
coupling scheme. Our numerical results show that for sh
effective range the diffusive effect due to coupling is n
sufficient to surpass the intrinsic randomness of the ma
On the other hand, for long coupling range the KS-entro
behavior indicates a transition from weak to strong chaos
the coupling strength evolves past a critical value.

Complete synchronization is characterized with the h
of the amplitude dispersion and a complex-valued order
rameter, and we analyze the time evolution of its magnitu
We found that, for short effective range the lattice nev
synchronizes, irrespective of its coupling strength. As
effective range becomes longer, a moderate coupling stre
is enough to make a number of lattice sites become m
coherent, although not completely synchronized. For str
coupling, however, there is complete synchronization as
approach the globally coupled case. In the latter case, the
a transition very similar to that exhibited by the KS entrop
t-

.F

tt
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We have used a phase definition for coupled map latti
based on the directional properties of the maximum m
amplitudes, in order to investigate to what extent we c
observe phase synchronization. The phases can assume
two values, and their ratio is a quantity similar to the ord
parameter. Accordingly, the dependence of this ratio is v
similar to the complex order parameter, such that amplitu
synchronization implies phase synchronization for this s
tem. For intermediate ranges the time evolution of t
phase-synchronization ratio has laminar regions alterna
with intermittent bursts of nonsynchronization, which we
found to obey a power-law dependence within the effect
range. This fact was also observed for amplitude synchro
zation and is related to the properties of the infinite- a
finite-time Lyapunov exponents in the directions transver
to the synchronization manifold.

The distribution of the average duration of interbu
laminar intervals scales with an exponent close to 3/2, s
gesting that it is a manifestation of on-off intermittency, f
there is an invariant synchronization manifold embedded
the high-dimensional phase space of the coupled map lat
and with the necessary stability properties with respec
displacements in directions transversal to this manifold.
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