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Lyapunov spectrum and synchronization of piecewise linear map lattices with power-law coupling
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We study the synchronization properties of a lattice of chaotic piecewise linear maps. The coupling strength
decreases with the lattice distance in a power-law fashion. We obtain the Lyapunov spectrum of the coupled
map lattice and investigate the relation between spatiotemporal chaos and synchronization of amplitudes and
phases, using suitable numerical diagnostics.
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[. INTRODUCTION with the distance along the lattice in a power-law fashion.
Such power-law coupling have been used in models of some
Coupled map lattices are spatially extended dynamicabiological neural networkgl4]. Other nonlocal couplings of
systems suitable to illustrate the interplay of spatial and teminterest are intermediate range couplings, that consider a fi-
poral degrees of freedom and the phenomena resulting fromite number of non-nearest neighb¢i%]; and small-world
this synergy as domain formation, traveling waves, spanetworks, which have regular couplings with nearest and
tiotemporal intermittency, defect propagation, and fully de-non-nearest neighbors as well as a small number of randomly
veloped turbulencgl,2]. One of the most intensively studied chosen nonlocal interactio46]. The power-law coupling
collective phenomena in spatially extended system is synp be considered in this paper presents an effective range
Chronizatior[S]. While SynChronization of pel’iodiC SyStem is parameter, in such a way that we are able to pass continu-
a well-known subject with a venerable history, for chaoticoysly from a local to a global coupling scheme. It was used
systems this investigation is relatively n¢wf. for studies of an extended Kuramoto mofi&¥], chains of
_ The diversity of dynamical phenomena exhibited by lat-¢,njeq kicked limit-cycle oscillator§18], coupled sine-
tices Of. coupled chaotic maps can be .revealed by. descnbln&rde map lattice§19], and coupled van der Pol oscillators
the various types of synchronized regimes they display. Th 0]. The synchronization properties of these systems were

question of how _synchronizati_on and Ch_aos are rela_ted i ound to be strongly dependent on the effective range, and
coupled map lattices and oscillator chains has received fere occurs a nonequilibrium phase transifiat] between

great deal of attention in recent yedt. In this paper, we hronized and hronized stat f
focus on the influence of the coupling between maps on th& Synchronized and a nonsynchronized state as we go from a
lobal to a local coupling fornp19,24.

amplitude and phase-synchronization properties, as well ) : - :
on the corresponding Lyapunov spectrum. In this paper, we analyze a lattice of chaotic piecewise

The effective coupling range is a key factor to determine/in€ar maps, so as to investigate the effects of a varying
whether or not the maps mutually synchronize. Short rang€0Upling range on the number of positive Lyapunov expo-
(nearest-neighbor or diffusiyeouplings do not favor syn- nents of the system. The Lyapunov spectrum in the local
chronization, since the coupling effect is typically too weakcoupling case has been studied by Kangkp and by Isola
to overcome the disorder caused by the map dynaf6ids. et al.[22], who stressed its connection with the spectrum of
On the other hand, nonlocal couplings tend to facilitate synthe discrete Schabinger operator in quantum mechanics
chronization, since the coupling effect extends throughouf23]. The corresponding spectrum for globally coupled lat-
the lattice, as in globally coupled map lattices, where eachices was also considered by Kanek®]. We study the
site interacts with the mean field produced by all the othelLyapunov spectrum by means of the corresponding
ones[8,9]. Nonlocal couplings appear in neural network ar- Kolmogorov-Sinai(KS) entropy[24] and Lyapunov dimen-
chitectures with local production of informatidriO], and  sion[25]. The former may be used to build a thermodynami-
also result from discretization of some partial integro-cal formalism for coupled map lattic¢26]. We have previ-
differential equations modeling physico-chemical reactionsusly investigated the effect of a variable effective range for
[11]. Further applications of nonlocal couplings are in assema lattice of coupled logistic maps at a cri§i7].
blies of biological cells with oscillatory activity, whose inter- ~ Another issue to be addressed in this paper is the synchro-
action is mediated by some rapidly diffusing chemical sub-nization properties of the coupled map lattice and their rela-
stance [12], and in systems of diffusion coupling in tions with its Lyapunov spectrum. For describing amplitude
nucleation kinetics, with elimination of the rapidly diffusing (or complet¢ synchronization we have used as numerical
component$13]. diagnostics the space-averaged amplitude and its dispersion,

We consider a form of coupling whose intensity decaysand a complex-valued order paramé@g]. According to the

phase definition of Hu and Li{i29], we also characterized
phase-synchronized states.

*Permanent address: Departamento de Matiema Estastica, This paper is organized as follows: in Sec. Il we study the
Universidade Estadual de Ponta Grossa, 84033-240, Ponta Grossgapunov spectrum, and Sec. Il is devoted to an investiga-
ParanaBrazil. tion of the amplitude synchronization. Phase synchronization
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is considered in Sec. |V, and the Sec. V contains our conclu-
sions.

II. LYAPUNOV SPECTRUM

We examine a lattice dfl coupled piecewise linear maps
x—f(x)=Bx (mod1), wherex{"e[0,1) represents the
state variable for the site(i=1,2, ... N) at timen, and 3
>1. A power-law coupling is given bj19]

N’

() —(1— My 4 RSN (i-)
Xnt1=(1 f)f(xn)+77(a)j:lja[f(xn )+ ],
@

wheree>0 anda>0 are the coupling strength and range,
respectively, and

08
o 71 €

FIG. 1. KS- entropy density in terms of the coupling range and
strength, for a lattice oN=501 piecewise linear maps wit

=3.0, periodic boundary conditions and random initial conditions.
is a normalization factor, witiN’=(N—1)/2 for N odd.

5
1-co N

The coupling term in Eq(1) is a weighted average of
discretized second spatial derivatives, the normalization fac- (j=1,2,...N). (5
tor being the sum of the corresponding weightsaH> o,
only those terms withi=1 will contribute to the summations
present in the coupling term, which results4r-2, so that
we obtain the usual future Laplacian coupling

N’ 1
na)=22 — 2)
i=1]

1—-€

Nij(B,e)=InB+In

Likewise, fora=0 the globaimean-fieldcoupling in Eq.(4)
leads to the following ll—1)-fold degenerate Lyapunov
spectrum[ 8]

| e . M(B)=InB, ©
xhi=(1=f )+ 5[0 )+ 106D, @)

Bll—e€

1 :
1+—)H (j=2,3,... N),

)\j(ﬁ,f)zln N—1

which connects nearest neighbors ofll;6]. In the case
where =0, we have thaty=N-—1 and the coupling be- provided e< (N—1)/N.

comes of a global type In a coupled map lattice it may well happen that many
N exponents are positive, hence a quantity of interest is the
W =1-ef(x()+ & , 2 Cf(xy, (4) density of KS entropy31,32
j=1j#i \i>0
J
where each site interacts with the mean value of all lattice h:<)‘i>1~)‘j>°:N 121 Aj- ™
sites, irrespective of their relative positioffdnean-field”
mode) [8]. The power-law coupling in Eql) may be re- It must be stressed that the equality betwbeand the den-
garded as a kind of interpolating form between these limitingsity of KS entropy holds rigorously for systems having a
cases. Further properties of the coupling term for arbittary Sinai-Ruelle-Bowen(SRB) measure[23]. SRB measures
may be found in Ref{18]. were constructed for certain coupled map lattice3).

The (uncoupledl piecewise linear map(x) = Bx (mod 1) We analyze the dependence of the KS-entropy density
has Lyapunov exponent,=In B for almost all initial con-  with the power-law coupling strengté and effective range
ditions x, (except a Lebesgue measure zero set of pointg. Figure 1 shows a plot di versusa ande for a lattice of
where the map is discontinugusuch that fo3>1 we have piecewise linear maps witB=3. For a global coupling ¢
a strongly chaotic dynamics. On the other hand, the couplee-0) the mean value of the KS-entropy density is close to
map lattice(1) exhibits a Lyapunov spectrum consistinghdf  zero for strong couplinglarge €) and at a given critical
ordered exponentd;=X\pna,>A>--->\y. For the two  value e* ~0.6 it grows monotonically to a maximum value,
limiting cases of the coupling prescripti¢f) this spectrum  achieved for vanishing coupling, and turns to be just the
is analytically known thanks to the constant slopef (f). Lyapunov exponent for uncoupled mapg=In3~1.098.
For a— o we have the local or diffusive couplin@®). Using It is possible to understand this transition based on the
periodic boundary conditionx¥’=x{), the Jacobian ma- Lyapunov spectrum for the global coupling case given by
trices are symmetric and circulant, and the correspondingq. (6). Except forA;=In 3, which is always positive for
Lyapunov spectrum i§7,22,30 B>1, the otherN—1 exponents are positive provided
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<e.=1-(1/B). Hence, fore= ¢, the KS-entropy density is
typically very small and actually vanishes fiir— . For O
<e<e, all the exponents are positive, and the KS-entropy
density depends oa as

D

500

T
— € ——— .
N-1 ® 200

100

For B=3 and largeN, h goes to zero fore=¢€.=2/3, in 0
agreement with the result depicted in Fig. 1.

As the effective range increases, we still have such a tran-
sition for some critical coupling streng#t («), after which
the KS-entropy density builds up and achieves its maximum
value A\, when the maps are uncoupled. For stronger cou- 2/ 2 1
pling (highere) the KS-entropy density has a positive value FIG. 2. Lyapunov dimension in terms of the coupling range and
that increases witlr. When is large the coupling between  gyengih, for a lattice oN=501 piecewise linear maps wits
maps becomes effectively noticeable with nearest neighbors. 3 9 "periodic boundary conditions and random initial conditions.
and even a strong coupling is not able to change the chaotic
dynamics of the orbits for each map, although the number ofis a clue of the complexity of the attractor structure in the

positive Lyapunov exponents diminishes as the couplingy-dimensional state space of the coupled map lattice.
strength grows.

We can use the analytical result for the Lyapunov spec-
trum of the local casé5) to explain this result. The maxi-
mum and minimum Lyapunov exponents aig, and Let us now turn our attention to amplitude synchronized
Amin(€)=Anp2(€) =In[B(1—2€)], respectively. |f6<~6c:[1 clusters of maps(or completely synchronized mapsor
—(1/8)]/2, we havex ,;,>0 and all exponents are positive, which the amplitudes’ are equal. For globally coupled
giving a quite large KS-entropy density. On the other hand]ogistic lattices these states were considered by Kahgko
even for e=¢, (=1/3 for B=3) there are still typically Who classified and coded the possible attractor types accord-

many positive exponents, what ensures the positiveness 3}g_to the p_roperties exhibited by thes!a clusters. A cluster for
the KS-entropy density, that nonetheless decreaseg as which all sites share a common amplitude has been called a
grows. For some particular values oft is even possible to coherent attractar We will consider situations for which

derive analytical expressions fhte), whena goes to infin- clusters of different sizes typically coexist with disordered
ity [30]. lattice sites.

Another quantity of interest is the Lyapunov dimensidn For a lattice of coupled maps we use as a synchronization
Let p be the largest integer for whichP_ \;=0. ThenD is diagn(_)stic the dispersion of the mz,i\lp amplitude§ with .respect
defined by one of the following relation@5]: to their space averagex),=(1N)={L;x{’ at a given time

h(B,e;a=0)= %{In B+(N—1)In

08 £

IIl. AMPLITUDE SYNCHRONIZATION

n!
0 if there is no suclp, 1 N 1/2
LA ()n=|—7 2 =002 (10
D={ p-+ >N i p<N, ) TAN-LE
|)\p+1| =1
N if p=N. The time evolution of the average amplitude is shown in Fig.

3 for a globally coupled lattice dfl maps withg=3, after a

In Figure 2, we depict the Lyapunov dimension of a lattice ofIaLge number of tranflengs hahve decayefd. &hed case \r/]vas

N piecewise linear maps wit3= 3 versusthe coupling pa- taken as an example, but the gross ieatures are the same
regardless of the value adopted for the effective range pa-

rametersa and e. Weakly coupled maps, regardless of the ter. F led X th i
range, have a maximum value for the Lyapunov dimension!2@Meter. For uncouple maphig. 3] the average ampli-

D max=N. It decreases sharply for a coupling strength greatePuo.Ie ﬂuc_tuate_s arognq 1/2’ W.hiCh is_ the expecteq result for a
than e~0.6 to values near zer@or small @) or somewhat uniform invariant d|str|buyon in the_mterv@b,l) displayed
higher (for large ). The properties of the Lyapunov dimen- by the strorzgly chaotic piecewise Ime_ar mz{§§].

sion are quite similar to the KS-entropy density. The de- L(%t P((i;(n _) be a prob§b|l|ty d|str|put|on, SO that
crease of Lyapunov dimension for intermediate coupling”(*n’)dXy” gives the probability of a map iterate to fall into
strength, in the local case, was observed for coupled logistién interval of widthdx{, at timen. Since the distribution of
map latticed34]. The very small values db shown in Fig. iterates is uniformP(x{’) = 1 for all x,[0,1), and we have

2 for a global and strong coupling suggest the existence of the average(x")=[3dx"x{"P(x(")=1/2. For coupled
low-dimensional attractor, which we will relate to a synchro-maps we cannot guarantee ergodiatyriori for the entire
nized regime. On the other hand, large dimension values giviattice, but if a sufficiently large number of maps remains
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FIG. 3. Time series of the average map amplitudesafer0.0 FIG. 5. Time series of the order parameter magnitude dfor

and(a) €=0.00;(b) €=0.60;(c) e=0.67. Other parameters are the =0-0 and(a) €=0.00; (b) €=0.60;(c) =0.67.
same as in the previous figures. ) o )
lows directly from substituting the common amplitude of the

chaotic (or, equivalently, ifh is large enoughthe average sites, Xy, into Eq. (1), which gives

amplitude is expected to be not far from 1&2e Fig. )],
Wi_th fluctuationg whose amplitudes increase with the cou- Xne1=(1— ) f (X)) + ——
pling strengthFig. 3(c)].
In Fig. 4 we show the amplitude dispersion for the same
parameters as in the previous figures. For uncoupled maphich reflects a symmetry inherent to a large class of cou-
[Fig. 4@] this quantity is approximately constant at 0.29, pling forms[36], and implies that the synchronization mani-
which is expected from a uniform distribution of iterates fold M is invariant under the application of the méfx).
since in this case d),=[/5dxOP(xM)(xD—(xM))2]¥2  An initial condition for the latticex’, that belongs to\t
=1/\/12. For nonzero coupling the maps pass from a nonwill generate subsequent spatiotemporal pattgffghat re-
synchronized, due to the oscillatory behavior of the dispermain in M for all timesn.
sion [Fig. 4(b)], to a completely synchronized staEig. However, the fact that a completely synchronized state is
4(c)], characterized by no dispersion at all with respect to thgpossible does not necessarily imply that it will be actually
corresponding space average. The fact that the averagebserved. IfM is transversally unstable such a completely
themselves are oscillating chaoticallffig. 3(c)] suggests synchronized state will not be achieved by typical spatiotem-
that the chaotic maps are completely synchronized in ampliporal patterns. A necessary, albeit not sufficient, condition for
tude: Xgl):XEZ):...:XgN>EXn, thus defining a one- existence of a completely synchronized state is that all the
dimensional synchronization manifolt embedded in the (N—1) Lyapunov exponents corresponding to the directions
N-dimensional state spa¢d]. If the Lyapunov exponent re- transversal taM be negative. If the synchronized state is
lated to the direction defined byt is positive(negative, the ~ chaotic the KS-entropy density goes to zero with an increas-
completely synchronized state is chaofjgeriodig. There ing lattice size.
are alsoN—1 mutually orthogonal directions transversal to ~ These arguments are supported by another numerical di-
M. agnostic of amplitude synchronization: the complex order
A completely synchronized state is actually a possible soparameter introduced by Kuramof@8], and here adapted
lution for a lattice with power-law coupling. This result fol- for coupled map lattices 44.9]

2f(Xn)

n(a) jzl

_f( n)

N
oal ‘ 1@ z,=R, exp(27ip,) = % > exp2aix®), (1)
% 02l . =1
or whereR,, and ¢, are the amplitude and angle, respectively,
-0.2 t t t t . . . . :
oal ®) of a centroid phase vector for a one-dimensional lattice with
% 02 Mk | | periodic boundary conditions. Figure 5 shows the time evo-
A { ‘ lution of the order parameter magnitude for the same param-
0.2 ; ; ; ; © eters as in the previous figures.
o4l 1 For uncoupled maps, we expect a pattern in which the site
35 02r 1 amplitudes<(” are so spatially uncorrelated that they may be
© ‘ ‘ ‘ ‘ considered essentially as random variables. In this case the
10000 10200 10400 10600 10800 11000 order parametez,= (ezmxn ); nearly vanishes for all times.

: This is indeed observed for the uncoupled case depicted in

FIG. 4. Time series of the amplitude dispersion fo+0.0 and  Fig. 5@a), in which the order parameter magnitude exhibits
(@) €=0.00; (b) €=0.60;(c) e=0.67. small oscillations about a value close to zero. In a completely
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synchronized state, like that depicted in Figc)5the order 500 = H
parameter magnitude rapidly grows to unity, indicating the
coherent superposition of the phase vectors for all sites with
the samegchaotig amplitudes at each time. The synchroni-
zation transient in the case of Figchis very short, but may
also have an arbitrarily long duration, as illustrated by Fig.
5(b). There is a transition to an amplitude-synchronized state 300 —
as the coupling range varies from global to local, such as
those previously found in chains of discrete and continuous-
time oscillators[18—20, and even in kinetic Ising models
with a power-law form of interaction between spir®]. \Y;
The amplitude-synchronized state may present intermit- 200
tent bursts of nonsynchronized behavior when the effective
range parameter assumes moderately large values, where tt
above-mentioned phase transition occurs. This intermittency
is revealed, in a time series of the amplitude dispersion, as ¢
sequence of the laminar phases with different durations in-
terrupted by bursts. We can understand the existence of thi
bursting by considering the invariant manifoltt corre- | |
sponding to a completely synchronized state. Suppose fol 10?0-4 10° 10°
simplicity that there is only one direction transversal\, (0—0. )
and that\ ¢ is the Lyapunov exponent related to this direc- c
tion, for initial conditions belonging toV1, and such that if . o N
A+<0 the synchronized state is transversally stable. In the ' 'C; & Average duration of synchronization laminar intervals
T for e=1.0 as a function ofv— a, for a,=0.486 875. Five initial

case of more th_a_ln one t.ransverse_ll direction one should US%nditions were used for computing the average. The solid line is a
the master stability function technique developed by PecorBower-law fit
and Carroll[38] in order to verify the stability ofM. '

It is useful to consider also the finite-time transversal The results of Fig. 5 suggest that it is useful to consider

Lyapunov exponenh(n), which is obtained by taking @ the mean value of the space-averaged order parameter mag-
short time interval of lengtih. The Lyapunov exponemtt is  pitude

the infinite-time limit of A\4(n) and it is independent of the
initial condition, contrary to\{(n) that typically depends on _ A .

it [35]. The finite-time exponents typically have a statistical (R)y=lim N > > RY, (12
distribution whose mean ia1, and with fluctuations that n—ee TN =1 M=0
may have positive as well negative values. hetbe slightly
higher than zero, hence if an initial conditioy’ for the
lattice starts near but off the synchronization maniféit it
will initially wander nearby M resulting in the laminar in-

400 — —

and Fig. 7 shows its dependence with the coupling streagth
and range«. Considering first the “mean-field” caseq(
=0) for weak coupling the mean order parameter is very

Is. but th | ¢ ; small, indicating absence of synchronization, a situation that
tervals, but the pattern eventually moves far away fiéih  opanges with increasing to a completely synchronized

[39]. However, because of the fluctuations inherent to thestate. For nearest-neighbor coupling, however, the mean or-

finite-time transversal exponents there are intervals for whicly, parameter remains small for all the considered values of
A1(n)<0 and the lattice pattern approachks forming the

intermittent bursts before returning to a new laminar state. 4ps
This effect has been studied in the context of the so-called
on-off intermittency{40,41. For more than one transversal
direction this mechanism still appli¢S]. 08
The average duration of these synchronization laminar
phases was found to obey a power-law dependence with th?©
difference between the range parameter and a critical valud-4
a,~0.486 875, in the for{r)=K(a—a,)?, where the ex- 02
ponent was found to bey=0.20247 (Fig. 6). When «
—a, the average laminar duration goes to infinity and even-
tually results in a steady synchronized state det «.. We
remark that this critical value af for a steady synchroniza-
ted state is close to the value after which the KS entropy o
begins to increase, when=1 [see Fig. 1. This corroborates
the already mentioned fact that for a completely synchro- FIG. 7. Mean value of the space-averaged order parameter mag-
nized state the KS-entropy density either vanishes or is exaitude in terms of the coupling range and strength, for a lattice of
tremely small ¢-1/N) [42]. N=501 piecewise linear maps wii= 3.0.

: 08
2 1 &
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€, indicating that a locally coupled lattice does not exhibit 1
amplitude synchronization at all, irrespective of how streng itk / ! (a)
is [11]. For intermediate effective range we do not find a 4
simple interpolation between these two limiting cases, since

for moderately strong coupling there is a bump of higher

values of(R), what implies the existence of a number of _ 08 Hr—— i 7
coexisting amplitude synchronization clusters. However, 3¢ 2 S—1 E
even this bump is smoothed out asincreases. 0.4 T

IV. PHASE SYNCHRONIZATION 02 —_—

LAY

it LM\ ]

There are many situations of physical interest in which : it
two or more continuous-time oscillators may have different 0
amplitudes, even in a chaotic regime, but witlplease co- 1 126 251 376 501
herence The oscillator phase can be defined in various ways
for continuous-time systems, the simplest one being a geo:
metrical phase for a bounded attracfdB,44]. For coupled
map lattices, an operational definition of phase-synchronizec (b)
states has been proposed by Hu and[l2@], as those states 08 n=2973 .
showing local maxima or minima for their amplitudes at the m
same time. The direction phase is provided by the direction
of two sequential iterations of the coupled mdgs$]. A 0.6 \_/ I

=
=3

guantitative definition of phase for a given lattice stfé at o

a timen is thus 04 n=2972 .

r N
n=2974
in such a way that a phase-synchronized cluster is a reuniol

of adjacent sites with the same valueR{f . 1 126 251 376 501
Figure 8a) shows the overlap of amplitude-site profiles, !
for a hundred successive times and after a large number of g g Overlap ofa 100, and(b) three space-amplitude plots,

transients have decayed, for a lattice of strongly coupleggter 2900 transients, for a lattice df=501 maps witha=0.49,
maps withs=3.0, in the intermediate range situation. Sinceand = 1.0. The arrows ir(b) indicate the phase direction.

the KS-entropy density for this lattice ls~2.2x10 3, it is
expected that many of these maps are behaving chaoticallyy-hronization ratio has laminar phases at 1.0 with irregular

n o_rder todallqu for.aFt')etteBr wsu;hzattmn Iofﬂ:he local bursts, some of them approaching the lower bound at
maxima and minima, in Fig. (8) we depict only three se- =1/2, indicating an intermittent behavior very similar to that

quennal proﬂles,_where the arrows S.“‘?W the phase OIIreCdescribed in the preceding section for amplitude synchroni-
tions. On the basis of the previous definition we can say that

at timesn=2972 and 2973 all sites in Fig. 8 are phase syn-
chronized, whereas at=2974 this occurs just for a fraction
of them.

Let us denote by N{P=3N (P’=0) and NV
==L, (PY=1) the number of lattice sites at a given time
with phases equal to 0 and 1, respectively. We define a 0.8 j
phase-synchronized ratjg, as[45]

it ())5() =
) 1 if xyIxy2,>1, 13
" |0 otherwise 0.2

c
(=%

1
pn=ymax N {? N D) (14

in such a way that, if the phases of all lattice sites flip ran-
domly between 0 and 1, its ratio would approach a constant
value, whereas ifjp=1 all lattice sites are in phase. The
minimum value for this ratio ip=1/2, a situation in which 0 :
half of the sites have a zero phase. 2500 2750 8000
As the lattice pattern evolves with time, this ratio varies in n
an intermittent fashion, as illustrated by Fig. 9, where the FIG. 9. Time series of the phase-synchronization ratio Nor
parameters are the same as in the previous figure. The phas&01, «=0.49, ande=1.0.
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FIG. 10. Number of phase-synchronization laminar intervals £
versuslaminar lengths forN=501, «=0.49, ande=1.0. There
were considered 42000 iterations and 2000 transients were dis-
carded. The solid line is a power-law fit. -04
zation. The average duration of the laminar intervals scales (b)
with the range parameter in a power-law fashion, just like
that depicted in Fig. 6 and with the same exponent, showing -09 -

that both share the same mechanism for bursting.

The number of phase-synchronization laminar intervals
also depends on the interval lengths according to another
power-law distribution(cf. Fig. 10 Q(7)=«7 7, with a © 14 \/\_\/—
slope fito~1.43. We remark that is close to the slope 3/2
theoretically predicted for the distribution of laminar inter-
vals characteristic of on-off intermittendy0]. Hence we
have numerical evidence that the phase- and amplitude- -19 -
synchronization intermittency is actually a manifestation of
on-off intermittency, in which the invariant manifold of in-
terest is the synchronization manifolM. We have also

found thato does not depend in a significant way on the -24 ‘ ‘ ‘
coupling strengtle, as illustrated by Fig. 1&), wherea was 0 0.002 0.004 0.008 0.008
kept constant ané¢ was varied between 0.965 and 0.980. 00

Outside this range the regime where phase synchronization is o
interrupted by bursts no longer exists. Similarly, for constant FIG. 11. Exponent of the power-law d'smbft'on 9f phase-
e the power-law exponent also does not change apprecia- SYnehronization laminar regionrsus (a) e, for «=0.47; (b) «
bly with the range parameter, as can be seen in Fig. (, ~ @, With €= 1.0, anda.=0.486 875,
in which the horizontal axis represents the differenee
—a, for a.=0.486 875(see also Fig. 6

There is also a transition between phase-synchronized and
nonsynchronized states, which can be evidenced by analyz P
ing the dependence on the coupling parameters of the mea !
ratio of phase-synchronized states(e,a)=lim, ..(1/ 02
n)2n_oPm, as depicted by Fig. 12 which is very similar to 0.8
Fig. 7, where the mean order parameter was plotted againg.7
the same variables. The shapes of both diagrams are bagg
cally the same for small and large effective ranges, even with
the bump characteristic of moderate coupling. This means
that, at least for the parameter ranges considered in thi
work, amplitude synchronization implies phase synchroniza-
tion.

08
V. CONCLUSIONS @ 21 €

Spatiotemporal chaos and synchronization are collective FIG. 12. Mean value of the phase-synchronization ratio in terms
phenomena typically displayed by coupled map lattices. Thef the coupling range and strength fd=501 andB=3.0.

056209-7



BATISTA, De S. PINTO, VIANA, AND LOPES PHYSICAL REVIEW BE55 056209

relation between them, however, is a complex issue since We have used a phase definition for coupled map lattices
there are many forms of synchronization of periodic and chabased on the directional properties of the maximum map
otic dynamics. We have chosen to study lattices of piecewisamplitudes, in order to investigate to what extent we can
linear maps because they exhibit, when uncoupled, strongbserve phase synchronization. The phases can assume only
chaos with a uniform invariant distribution. In addition to two values, and their ratio is a quantity similar to the order
this fact, piecewise linear maps have constant slope and thgarameter. Accordingly, the dependence of this ratio is very
Lyapunov spectrum may be studied in detail. Quantities okimilar to the complex order parameter, such that amplitude
interest in this study are the KS-entropy density and thesynchronization implies phase synchronization for this sys-
Lyapunov dimension. tem. For intermediate ranges the time evolution of this
The coupling properties play a fundamental role on thephase-synchronization ratio has laminar regions alternated
lattice dynamics. We have used a coupling prescription thatvith intermittent bursts of nonsynchronization, which were
makes possible to pass continuously from a global to a locdbund to obey a power-law dependence within the effective
coupling scheme. Our numerical results show that for shortange. This fact was also observed for amplitude synchroni-
effective range the diffusive effect due to coupling is notzation and is related to the properties of the infinite- and
sufficient to surpass the intrinsic randomness of the mapdinite-time Lyapunov exponents in the directions transversal
On the other hand, for long coupling range the KS-entropyto the synchronization manifold.
behavior indicates a transition from weak to strong chaos, as The distribution of the average duration of interburst
the coupling strength evolves past a critical value. laminar intervals scales with an exponent close to 3/2, sug-
Complete synchronization is characterized with the helmesting that it is a manifestation of on-off intermittency, for
of the amplitude dispersion and a complex-valued order pathere is an invariant synchronization manifold embedded in
rameter, and we analyze the time evolution of its magnitudethe high-dimensional phase space of the coupled map lattice,
We found that, for short effective range the lattice neverand with the necessary stability properties with respect to
synchronizes, irrespective of its coupling strength. As thedisplacements in directions transversal to this manifold.
effective range becomes longer, a moderate coupling strength
is enough to make a number of lattice sites become more ACKNOWLEDGMENTS
coherent, although not completely synchronized. For strong
coupling, however, there is complete synchronization as we This work was made possible by partial financial support
approach the globally coupled case. In the latter case, there filom the following Brazilian government agencies: CNPq,
a transition very similar to that exhibited by the KS entropy. CAPES, Fundg@ Araucaia (Parang and UFPR/FUNPAR.
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